
Introduction
With the right analytics tools, enterprises can grow their investment in data by 
making data-driven decisions and bridging the gap between cross-functional teams, 
data scientists, and software engineers. This implementation guide explains how to 
adopt machine-learning solutions to help your organization stay competitive and 
identify opportunities to optimize a big data solution. 

End-to-End Optimized Machine-Learning Pipeline
The solution documented here demonstrates how foundational, reusable components 
can be used to develop an end-to-end machine-learning pipeline, using the Cloudera 
Distribution for Hadoop and Apache Spark. Additionally, it showcases how to tune 
and scale the solution to maximize utilization of the data center resources powered 
by Intel® products. These products include Intel® MKL, Intel® Turbo Boost Technology, 
Intel® HT Technology, and Intel® AVX-512. 

Our testing revealed that end-to-end optimization and Intel MKL resulted in an overall 
21.4 percent performance boost compared to not using Intel MKL, as measured by 
total time.1 For the model training stage in particular, Intel MKL accelerated the ALS 
algorithm up to 2.37x (depending on the value of the rank parameter).1

Machine Learning in the Financial Services Industry
The use cases discussed in this paper are drawn from retail consumer banking. However, 
the methodology shown in this reference architecture can be applied to many other use 
cases such as consumer retail, insurance, health and life sciences, manufacturing, energy, 
and transportation. Retail banks use financial technology to engage with their customers 
and expand their operations. Financial services organizations can use analytics solutions 
to recommend a variety of products and services to consumers. These include a new 
checking or saving account, credit cards, and lending services. The latter could be for 
automobiles, homes, or education, or refinance packages with attractive rates. Other 
services include asset and investment management (stocks and bonds) and international 
banking. The major challenge faced by banks—or any industry—is clearly understanding 
customers’ needs and their choices, and using that knowledge to drive business and 
influence customers’ buying decisions. 

Create a scalable, reusable machine-learning architecture based on Intel® 
technology and open source software that can solve real-world business 
problems in retail banking and other industries
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Figure 1. Intel® MKL plus end-to-end optimization 
improves machine-learning workload performance.

21.4% 
IMPROVEMENT

IN MODEL TRAINING
With Intel MKL

Without
Intel® MKL

With
Intel MKL

LOWER IS BETTER
Data Acquisition Data Processing Feature Engineering

Model TrainingModel Inference

1



Implementation Guide | Implementing End-to-End Predictive Analytics Solutions 2

Accelerating Execution and Optimizations 
Using Intel® Technologies
Intel provides technologies to accelerate the various phases 
in a machine-learning workflow. Figure 2 shows some of the 
key aspects that can take advantage of optimized hardware 
and software integrated with Apache Hadoop. Effectiveness 
may vary based on workflow and features, and necessary 
benchmarks should be run before and after to measure the 
improvements in performance.

Solution Overview 
This document describes a reference architecture for 
deploying a predictive analytics solution for retail banking. 
The end-to-end machine-learning pipeline is based on the 
CDH platform on Intel® architecture and adjacent technologies. 
Figure 3 provides an overview of the building blocks for this 
solution architecture. Each data engineering or analytics stage 
defines its API, which helps data scientists and data engineers 
to standardize the data exchanges across multiple use cases. 

Data Engineering
Churn Analytics, Credit Risk 
Analytics, Recommendation 

Analytics, Clustering Analytics

Intel® Xeon® Scalable Processors and 
Intel® Architecture-based Components

Red Hat Enterprise Linux

Cloudera Distribution of Hadoop

Storage

Solution Architecture:
Retail Banking Machine Learning Analytics
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Figure 3. Our machine-learning reference architecture is built 
on Intel® technologies and CDH and uses many open source 
tools to support several predictive analytics use cases. 

The predictive analytics workload for retail banking includes 
the following modules:

• Workflow represents the pipeline execution sequence, 
dependencies, and data flow, including the configuration files, 
workload input parameters, and storage paths (see Figure 4).Machine Learning Data Workflow
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Figure 4. Workflow for creating and managing the data flow 
in a machine-learning pipeline.

• Interface provides the abstraction for machine-learning 
stages or nodes in the pipeline implementation.

• Data source represents a subset of data collection from 
multiple internal and external data sources in a banking 
environment and third-party vendors (see Figure 5).

• Data acquisition for data storage and management of 
the staging dataset (performs ETL operations on Hadoop 
Distributed File System [HDFS]).

• Advanced data pipelines for predictive analytics use cases  
using the banking data model. Each use case can configure 
one or more data engineering stages: preprocessing, feature 
engineering, model training, and model inference. See the 
sidebar Sample Predictive Analytics Use Cases. 

• Model storage to store and manage the model metadata, 
model type, parameters, and files after the feature 
engineering and/or model training stages in the pipeline. The 
model and metadata both are captured for future analysis.

• Data storage to store intermediate results during the 
workflow, including reading and writing to tables.  
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Accelerating Execution and Optimizations Using Intel® Technologies

Figure 2. Intel® technology can accelerate machine-learning workloads using built-in features of the Intel® Xeon® processor 
Scalable family and other optimizations such as Intel® MKL.
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The intermediate staging results are stored on HDFS in 
Parquet format, managed by Hive; The final prediction 
results are stored on Apache Kudu for fast access to verify 
the quality of predictions.

The interface and workflow modules make the machine-
learning pipeline more abstract, decoupled, and reusable 
with modularized configurations to control the data flow. 
For example, the submodules (preprocessing, feature 
engineering, model training, and model inference) allow a 
data scientist to modify a specific implementation of the 
submodule and quickly plug the changes into pipeline as 
desired. This solution includes the complete reference 
binaries and the dataset. 

Simplified Retail Banking Data Model
Typically, banks implement a proprietary system to meet 
their custom needs for processing transactions, creating 
reports, or handling customer queries. Common examples 
of such systems include the Oracle Financial Services Data 
Warehouse and the SAP Business Warehouse for banking 
and financial services. Several other similar solutions are 
available, as well. Figure 5 provides a high-level logical 
depiction of the physical data warehouse implementation for 
retail banking. Note that Figure 5 is an illustrative example 
only; a full-fledged banking data model will be far more 
complex and is outside the scope of this paper.

Banking Logical Data Model
Illustrative Example Only

Transaction Database Subjects may include Products, 
Party, Location, Calendar, Contacts, Instruments, 

and Accounts, and Transactions and Events

Reporting 
Warehouses

Staging for
Analytics

Transactional  
Databases

Figure 5. The retail banking logical data model consists of 
several transactional databases, a staging area for analytics 
(often called the enterprise data warehouse or EDW), and 
reporting warehouses.

Overall, the logical data model consists of the following:
• Transactional databases. These stores are typically updated 

very frequently as new events occur. Enterprises use relational 
stores to implement these data models. This space is mature 
enough to accommodate lower latencies and to scale both 
horizontally and vertically to handle higher throughput. 

• Reporting warehouses. These stores are typically created 
for reporting purposes and are accessed on an on-demand 
basis. The report generation is usually a batch process running 
on a periodic schedule such as nightly, weekly, monthly, 
quarterly, or yearly. Typically, enterprises model these as 
large-scale data integration jobs that can be horizontally 
scaled and do not have any latency constraints. Traditional 
business-intelligence and data-integration frameworks, such 
as Informatica Data Integration Hub and Oracle Fusion, act as 
intermediaries to orchestrate these jobs. Recently, enterprises 
have started using MapReduce-based frameworks such as 
Apache Hadoop and Spark to make these processes more 
robust and fault-tolerant while being able to scale horizontally.

• Staging for analytics. A middle ground exists where 
necessary data is either staged as-is or preprocessed and 
aggregated for further decisions based on analytics. In 
this guide, we focus on this staging warehouse and refer 
to it as the EDW. This staging area is typically updated on 
a schedule so that analytical jobs are run in a cadence that 
provides meaningful results in the time frame during which 
the data was collected. The EDW is also shared among 
many data scientists and application developers, so they 
most likely use only certain tables from this store.

Sample Predictive Analytics Use Cases
The four sample use cases for retail banking are as 
follows:

Recommendation analytics. Recommendation systems 
in banking and finance help guide users or customers to 
discover new products based on implicit feedback from 
other similar customers, their activities, and preferences 
relating to the services that they use currently. We discuss 
the implementation and performance for this use case in 
greater detail in this guide.

Customer analytics for predicting customer churn. 
Churn prediction analytics helps to identify customers 
who might stop using banking services or might be 
inclined to switch to competitors. We treat the analysis 
as a binary classification model (just two classes) where 
the customer will either churn or stay. If the prediction 
value is true, then there is a high likelihood that the 
customer might stop using some or all the services. 

Customer analytics for predicting credit risk. Credit risk 
analytics helps to identify clients or potential applications 
that might be high-risk given their financial portfolio and 
historical transactions. Usually, credit risk is computed 
using a variety of external factors such as credit scores, 
balances across all financial assets, and the debt products 
owned by the customer. However, to simplify our use case, 
we assume that all information has already been gathered 
by the data acquisition engine and is part of the banking 
data model. To extend the source to other data points, 
appropriate changes should be made to the EDW steps 
such as integration with other third-party services.

Customer segmentation analytics for user behavior 
modeling. One of the many requirements of a financial 
services provider is to better understand the categories 
of customers so that the provider can model its 
services while maximizing target penetration. This type 
of modeling is often achieved using clustering and 
identifying the similarities or associations in the available 
data. Once the clusters have been identified, necessary 
actions or strategies can be developed for each segment.

Note: Only recommendation analytics is discussed in 
detail in this paper.
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Figure 6 illustrates a banking EDW model that shows relationships 
between different fact tables such as Product, Loans, and Credit 
Cards. (Note that a real-world EDW model would be far more 
complex.) Various combinations of these tables are used by data 
scientists and application developers. For example, the Product Order 
table acts as the central table, which typically captures a product 
that the bank offers, contains a link to the account with which it is 
associated (a client could have multiple accounts), and the client ID 
(for aggregation and analytical purposes). 

In Figure 6, variable names in italics indicate the foreign keys. The 
arrows represent the foreign key relationship between tables. Variable 
names in bold are the target fields in the machine-learning pipeline 
that we are trying to predict and are used as ground truth (to measure 
the accuracy of the training set’s classification for supervised learning 
techniques). These target variables for the use cases are as follows:
• The recommendation analytics target is an implicit rating based 

on the Product Order table.
• The customer churn analytics target is account_status from the 

Account table.
• The customer credit risk analytics target is risk from the Client table.
• The customer segmentation analytics target is based on review 

entered in the Client table. 

Retail Banking Use Cases for Predictive Analytics 
and Machine Learning
The banking data model shown in Figure 5 provides a solid 
environment for using machine-learning and analytical techniques 
to derive insights from transactional and customer data. 

Figure 7 illustrates three suggestive pipelines that benefit 
from machine learning and analytics: a recommendation 
analytics pipeline, a customer analytics pipeline, and a customer 
segmentation analytics pipeline. The customer analytics pipeline 
supports several use cases including churn analytics and credit 
risk analytics. In the figure, the highlighted boxes represent 
where Intel MKL can be used to accelerate performance. Figure 6. The typical retail banking EDW consists of 

many transactional databases and tables.
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Figure 7. Several retail banking use cases can benefit from machine learning.
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We discuss only the recommendation analytics use case in 
detail in this paper. The following section provides more 
information about the individual stages in data exploration 
and data science adoption of the pipeline.

Recommendation Analytics Use Case Details
The following sections describe the dataset used for testing 
and discuss the step-by-step machine-learning stages in 
the recommendation pipeline—from acquiring data and 
preprocessing to model training and inference.

Dataset
The data for the recommendation system is obtained from 
several tables (as shown in Figure 6), to understand the 
customers’ financial portfolio and daily interactions.

• The Client table records the customer enrollment and 
demographics information.

• The Product table comprises information regarding 
products and different types.

• The Account and Investment tables capture the different 
accounts like savings, checking, premium services, and 
enlists the accrued invested funds towards retirement 
and wealth plans. 

• The Credit Card and Loan tables track the outstanding 
amount on active credit and loans accounts.

• The Transaction and Payment tables maintain the 
aggregated amount for the flow of money between 
different clients, accounts, and card services.

• The Taxation, Insurance, and Customer services tables 
capture the other miscellaneous services occasionally 
provided to clients.

We used a highly customizable third-party data generation 
tool, Parallel Data Generation Framework (PDGF), to simulate 
the reference banking data. It is based on the probability 
distribution adapted from the census income dataset and 
models some of the client demographic information such 
as marital status, education level, gender, capital gains, and 
work hours per week. 

Data Acquisition and Preprocessing
Many enterprises have faced the challenge of maintaining 
legacy MapReduce code base. Hive provides flexibility to 
quickly adapt Spark processing for analysts/developers 
with SQL background. Hive on Spark (HoS) is more suitable 
for complex workloads with multiple MapReduce stages 
involving shuffle, union, and join operations. In contrast, 
Hive on MapReduce (HoMR) can suffice for queries with 
a small number of stages. We recommend using HoS for 
better performance.

Using the HDFS command-line interface or Flume, data is 
loaded into HDFS, a fault-tolerant replicated distributed 
filesystem. We then load the dataset using Hive in Parquet 
format. We also provide options for other formats like 
TextFile, CSV, and ORC. Hive provides SQL-like familiarity 
and makes it easy to manage and analyze the data on HDFS. 
Parquet provides columnar storage with compression and 
encoding for efficient ETL operations. CDH v6 supports 
vectorization on Intel architecture for Parquet and ORC 
formats. In vectorized query execution, data rows are 

batched together and represented as a set of column vectors. 
Cloudera recommends using Parquet for optimizations using 
vectorization because of the available support for Parquet 
across other components. Hive also provides scalability, 
redundancy, and extensibility. In our experiment, we have 
observed up to 2.8x compression for Parquet compared 
to the TextFile format for Hive tables (see Appendix C: Data 
Acquisition – Compression Benefits for Hive on Spark with 
Parquet Format).

Upon acquisition, we identify the different tables and relevant 
features useful in model training, change the data types, and 
then join the aforementioned tables to create staging tables 
with tuples (client_id, product_id, aggregated_features, and 
so on), grouped together to retrieve aggregated features 
resulting from joining different tables.2 It’s not plausible to 
get direct feedback like product ratings from clients for each 
product consumed by them. Therefore, the rating needs 
to be derived from customers’ interaction with different 
accounts, products, investments, and card services. These 
aggregated features are later used during feature engineering 
for computing the feedback on respective products (see 
“Feature Engineering”). The relative latest activity should be 
given more weight in computing the feedback for respective 
products. To consolidate data across all clients and products, 
we created the following denormalized tables:

• The Product Order table summarizes purchased products 
by the customer over years of business with a bank.

• The Recommendation Ratings table filters for the last 
X years to adjust the training dataset size.

The initial value for a product’s base rating is solely 
based on when the product was purchased (that is, order 
placement data). The resulting columns after joins are 
checked for null values and substituted with default 
values. We recommend storing the intermediate results at 
the end of each stage of the workflow and deleting those 
intermediate results after successful completion of the 
next stage. This may help avoid re-runs due to errors in a 
module and may also ease debugging issues in the data flow 
between processes and verification of module functionality 
during runtime. The data acquisition and preprocessing 
steps include performing complex queries including union, 
joins, sum, count, average, filter, and windowed operations 
on Parquet tables managed by Hive.

We recommend tuning the Hive configuration during 
the data acquisition and data preprocessing, modifying 
parameter values based on the scale factor. To learn more 
about detailed configuration and tuning, refer to the Hive or 
Cloudera documentation.

Feature Engineering
The feature engineering module selects the data to be fed into 
the model training step. Typically, dimensionality reduction, 
boosting, regularization, one-hot encoding, indexing, and 
normalization are the most common steps data scientists use 
to prepare the data before it is ready for model training.

For product recommendation analytics, we compute delta 
ratings as an effect of customers’ behavior (such as purchasing 
activity) from different tables to influence the estimates of 
the base rating as mentioned previously in the preprocessing 
stage. The base rating is further augmented based on client 

https://archive.ics.uci.edu/ml/datasets/census+income
https://docs.cloudera.com/documentation/enterprise/6/6.2/topics/hive_query_vectorization.html
https://blog.cloudera.com/faster-swarms-of-data-accelerating-hive-queries-with-parquet-vectorization/
https://cwiki.apache.org/confluence/display/Hive/AdminManual+Configuration#AdminManualConfiguration-HiveConfigurationVariablesUsedtoInteractwithHadoop
https://www.cloudera.com/documentation/enterprise/latest/PDF/cloudera-hive.pdf
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demographics and product type. For example, demographics 
information like is_home_owner, employment_status, annual_
income, is_mobile_user, mobile_alerts_on, customer_type, and 
is_social_profile_connected are used to influence rating values 
for products designed for relevant types of customers. The 
historical transactions with different products (such as number 
of credit cards, saving accounts, loans, seasonal promotions 
for new accounts for students and taxation services) are used 
to boost the respective product’s rating. This changes the 
ratings from explicit to implicit feedback, because we use 
other features to internally compute the rating value. For 
more information on explicit versus implicit feedback, refer 
to the discussion on the spark.org site. 

Additionally, the various delta ratings are computed from the 
other tables and added up to the final product rating for model 
training. The MaxAbsScaler is used to measure the weight of 
features like number of active accounts, sum of invested amount, 
number of active credit cards, outstanding balance in loan 
accounts, and volume of payment and transaction amounts 
across all clients and products. Spark ML has a dedicated feature 
package (org.apache.spark.ml.feature) that provides useful 
classes and functions to transform the features to simplify 
the effort for data scientists. For example, VectorAssembler, 
StandardScaler, Normalizer, Bucketizer, OneHotEncoder, 
StringIndexer, and Tokenizer are commonly used. 

Model Training and Cross-Validation
Collaborative filtering and content-based filtering are among 
the frequently used algorithms for recommendation systems. 
We use the Alternating Least Squares (ALS) implementation 
of collaborative filtering to learn the latent factors necessary 
to build our recommender. 

USING ALS3

For clients (client_id) and products (product_id), the 
algorithm starts by creating an c x p matrix R where r is the 
computed rating value (product_rating) for each product (p) 
and each client (c):

Rcp = CPT

Rcp = { r if client c ordered product p
0 if client c did not order product p }

The goal is to factorize the rating matrix R into two: matrix 
C (client factor) and matrix P (product factor), using a small 
number k, such that C summarizes each client c by k vectors 
and P summarizes each product p by a k-dimensional vector. 
For each iteration, the algorithm first optimizes P by fixing C 
and, then fixes P and optimizes C, for the given rating matrix 
Rcp. We repeat this optimization cycle for a defined maximum 
number of iterations. The cycle must be tuned to reach a 
convergence point where the iterative changes in the two 
matrices are quite small. 

IMPROVING THE ALS MODEL
We use Spark ML Pipelines to build a PipelineModel or 
CrossValidatorModel that runs across several regularization 
parameters and performs k-fold cross-validation. All 
these parameters are configurable for data scientists to 
run different hypotheses. For comparing models, we use 
RegressionEvaluator, which uses Root Mean Squared Error 
(RMSE) as the metric to evaluate ALSModel. Finally, we 

package the algorithm model, grid for parameter tuning, 
and model evaluator into the stages of the PipelineModel 
(or CrossValidatorModel if cross-validation is enabled). 

For improving model performance, we have incorporated 
various parameters from the ALSModel class. We set 
ImplicitPrefs as true, to indicate that the rating value is a 
derived value and not readily available from customers. The 
confidence in this derivation can be controlled by setting 
the value for Alpha, with a default value of 1. The rank k 
parameter represents the number of latent factors and is set 
to 40 in the default configuration file. We found that tuning 
the number of partitions as a multiple of the total number of 
cores available on all workers is most useful in increasing the 
parallelism for Spark jobs. To improve performance in the 
distributed ALS algorithm, we experimented with intermediate 
user and item factors (that is, ProductBlocks and 
UserBlocks.) These factors control the number of blocks that 
are cached in memory during runtime by the ALSModel. This 
helps to reduce the shuffle of feature vectors between workers. 
Refer to Spark ML ALS documentation for more details.

Model Storage
The output of the CrossValidatorModel or PipelineModel is 
stored on HDFS and a corresponding entry is input into the 
“model_catalog” table in Kudu, which is managed by the 
Model Storage module. The CrossValidatorModel returns the 
best model from the different k-fold validations executed on 
the training dataset. The cross-validator internally represents 
the best model as well as the metrics that helped it determine 
how the model was selected. The model catalog includes 
model version, timestamp, parameters, model path, and 
validation accuracy on the test dataset. These stored models 
and their metadata can enable decision makers to choose 
which model to load for inference, based on whether the 
business needs the model provisioning services to be more 
accurate or faster. 

Model Inference
The solution offers different types of model selection policies 
from the model catalog for a particular use case. Users can 
specify their choice in the configuration as 

• Specific. Uses a universally unique identifier (UUID) for the 
model to be loaded

• Best. Chooses the model with the lowest cost/error value

• Latest. Chooses the last trained model for that pipeline

The inference pipeline is similar to the training pipeline, 
except it uses the transform method on the trained model 
to obtain recommendations for the new set of clients and 
services. The inference job can be executed on demand 
or as a scheduled job on a batch of features. Scheduled 
jobs tend to optimally utilize cluster resources. The feature 
values are typically pre-computed and stored using batch 
inference jobs that run on a weekly or monthly cadence. 
The recommendations are sorted prediction scores of how 
likely the client is to subscribe to the service or purchase a 
product. Usually, we select the top k products (where k lies 
between 3 to 10) with the highest predicted ratings, and 
these recommendations are proposed to the clients as part 
of a marketing campaign. These prediction results are stored 
in datastores like Kudu for faster retrieval.

https://spark.apache.org/docs/2.2.0/ml-collaborative-filtering.html#explicit-vs-implicit-feedback
https://spark.apache.org/docs/latest/ml-features.html
https://spark.apache.org/docs/2.3.0/api/java/org/apache/spark/mllib/recommendation/ALS.html
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Model Drifts 
Model training is a continuous process; without regular 
model training, the customer experience can degrade. Model 
accuracy can be affected by the rate of increase in the number 
of clients and products and a product’s frequency of use and 
popularity. Over time, a model can succumb to model drift.4 
When customers pursue certain recommendations or update 
their ratings, it creates a feedback loop and requires the model 
to be re-trained on new data. It is possible to understand 
the impact of this feedback and analyze this information to 
prevent model drift. The frequency of model training depends 
on the business need and cost constraints; however, it is 
critical in some industries such as online retail services to 
stay competitive and relevant. Enhancements suggested in 
the paper, “Deconvolving Feedback Loops in Recommender 
Systems” could be added to improve model accuracy.

Performance 
In the recommendation pipeline, each stage exhibits slightly 
different workload characteristics, and requires optimization 
and tuning to maximize utilization of all cluster resources. 
For brevity, this guide discusses only two stages in detail: 
preprocessing and model training. 

The preprocessing stage uses HoS aggregation queries, 
which are compute-intensive tasks and include union, joins, 
aggregate, and filter operations. We recommend tuning the 
garbage collection activity and using vectorization for Hive 
queries. These queries scale linearly with additional executor 
and nodes. 

The model training stage is memory-intensive and requires 
fine-tuning Spark memory configurations. We focused mainly 
on tuning the parameter rank with respect to the evaluation 
metric Root Mean Square Error (RMSE). The rank parameter 
indicates intermediate matrix-rank of the Client and Product 
matrices that are decomposed from the rating matrix by the 
ALS algorithm. The increase in rank impacts the complexity 
of solving the two matrices by increasing the number of 
matrix operations. This behavior illustrates the need for 
more memory to perform in-memory caching for Client 
and Product matrices. The Intel MKL parcel for Cloudera 
boosts machine-learning and data analytics performance by 
accelerating BLAS Level 1 routines and functions (examples 
include dot, scal, and daxpy) in Spark MLlib. In this pipeline, 
the Intel MKL parcel for Cloudera accelerates the ALS 
algorithm up to 2.37x for Rank 160 (see Figure 8). 

Intel® MKL Parcel for Cloudera
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Figure 8. Intel® MKL Acceleration for model training using 
ALS algorithm (18 worker nodes) SF 2000.

Analyzing the end-to-end pipeline runtime with consideration 
for the best model deployment resulted in a 21.4 percent 
increase in overall performance, compared to a cluster without 
Intel MKL.5 Intel MKL acceleration can enable data scientists to 
experiment with other parameters like alpha, regularization 
parameters, and cross-validation to fine-tune the model.6

Next Steps
In future tests, we plan to extend our performance testing 
by adding Intel® Optane™ persistent memory to the 
configuration for running model training with larger rank 
values. We can also analyze and optimize for the following 
scenarios, creating dedicated resource pools for model 
training and the rest of data engineering operations:

• Tuning resources for serving multiple parallel queries

• Running multiple use cases 

CDH for Predictive Analytics
Cloudera Distribution for Hadoop (CDH) is an open source 
platform that is built entirely on open standards. CDH 
includes robust Apache Hadoop 3.0 and Spark 2.x, along with 
a variety of other open source components from the big data 
ecosystem. This reference architecture uses CDH’s scalable 
platform to deploy our machine-learning pipelines and 
analytics with the banking data model. Table 1 lists elements 
of the open source ecosystem that are used in this reference 
architecture. The system requirements and Cloudera role 
distribution are listed in Appendix A: System Requirements 
and Appendix B: Cloudera Role Distribution - 21 Nodes. 
Detailed best practices for cluster sizing can be found here.

Table 1. CDH Open Source Components for Advanced Analytics

Analytics Stage Open Source Tools
Data Acquisition HDFS, Hive, Flumea, Kafkaa, and Scoopa

Data Processing Apache Hive on Spark, Apache Spark and 
Structured Streaminga, Hive on Teza

Model Training Apache Spark and Spark ML
Data Storage • Apache Parquet: the column-oriented data 

serialization standard for efficient data analytics 
• Apache ORC: self-describing type-aware columnar 

file format designed for Hadoop workloads
• Apache Kudu: a new, scalable and distributed 

table-based storage for hybrid architectures that 
handle both transactional and analytics workloads

Model Storage Apache Parquet, Apache Kudu
a  Components can be added; currently not included in the reference 

architecture.

https://papers.nips.cc/paper/6283-deconvolving-feedback-loops-in-recommender-systems.pdf
https://papers.nips.cc/paper/6283-deconvolving-feedback-loops-in-recommender-systems.pdf
https://docs.cloudera.com/documentation/other/reference-architecture/PDF/cloudera_ref_arch_metal.pdf
https://docs.cloudera.com/runtime/7.0.0/hive-introduction/topics/hive-apache-hive-3-architectural-overview.html
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Apache Spark Optimization
Apache Spark is well integrated with CDH and widely used for 
developing analytics pipelines. Spark is easy to use, expressive, 
and optimized to achieve high throughput. Apache Spark 2 is 
equipped with data serialization, whole-stage code generation, 
and an improved catalyst optimizer. The Intel MKL parcel for 
Cloudera accelerates Apache Spark MLlib by optimizing the low-
level routines for performing common linear algebra operations. 
Examples of such operations include vector addition, scalar 
multiplication, dot products, linear combinations, and matrix 
multiplication. No application code changes are required to 
benefit from Intel MKL acceleration and integration is simple 
using the Intel MKL parcel for Cloudera.

Conclusion
Providing a customer-centric experience, with product 
and service recommendations that are tailored to specific 
customer preferences and behaviors, is an important 
aspect of doing business in today’s digital world. 
Intelligent recommendation systems, driven by machine-
learning algorithms such as ALS are important. But just 
as vital as the actual recommendations is the algorithm’s 
overall performance—customers expect near-real-time 
recommendations. Our research has revealed that a real-
world machine-learning infrastructure consists of more 
than just the machine-learning code. Lack of attention to the 
other areas of data analytics (such as storage, BLAS routine 
performance, and memory configuration) can sabotage 
machine-learning projects.7 For machine learning to deliver 
on its promise, it must be based on a solid data engineering 
foundation. Specifically, our research demonstrates that 
Parquet vectorization for data processing can increase data 
compression by 2.8x8 and Intel MKL acceleration for Spark ML 
speeds up model training by up to 2x.9 
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Appendix A: System Requirements
Table A1 provides the hardware and software requirements for this reference architecture.

Table A1. Bill of Materials

Hardware Requirements
Processor 21x Intel® Xeon® Gold 6248 processor

(20 cores, 40 threads, 2 sockets)
Memory 384 GB or higher (12x 32 GB, 2933 MHz DDR4, DIMMs)

Boot Drive 1x 960 GB Intel® SSD DC S4500 Series SSDSC2KB96
Storage for HDFS 8x 4 TB SEAGATE ST4000NM0095 for 32 TB storage
Storage for Yarn temporary 2x 2 TB Intel® SSD DC P4510 for 4 TB storage
Data Network Intel® Ethernet Network Adapter X722 (10 GbE)
Intel® Hyper-Threading Technology Enabled
Intel® Technology Enabled
Power-Management Settings Performance

Software Requirements
• Red Hat Enterprise Linux CentOS Linux v7.6 • Hive 2.1.1-cdh6.2.0
• OpenJDK 1.8 • Apache Kudu 1.9.0-cdh6.2.0
• CDH v6.2.0 • PDGF v2.6 (Parallel Data Generation Framework)
• Apache Spark 2.4.0-cdh6.2.0 • Intel® MKL parcel (mkl-2019.5.281)
• Hadoop 3.0.0-cdh6.2.0 • Intel MKL Wrapper Parcel 1.0

Appendix B: Cloudera Role Distribution - 21 Nodes
Table B1 provides information about how the Cloudera roles are distributed across the 21 nodes.

Table B1. Cloudera Role Distribution

Utility Nodes (3) Worker Nodes (18)
Master Node #1:
• Name Node
• YARN Resource Manager
• ZooKeeper #1
• Job History Server
• Spark History Server
• Kudu Master

Utility Node #2:
• Cloudera Manager
• Cloudera Manager 

Management Service
• ZooKeeper #2
• Secondary Name Node

Utility Node #3:
• HiveServer2
• Hive Metastore
• Oozie
• ZooKeeper #3
• HDFS Balancer
• Hue Server 

• Data Node
• Node Manager
• Hive Gateway
• Spark Gateway 
• Kudu tablet server (3 out of 18)

Appendix C: Data Acquisition – Compression Benefits for Hive on Spark with Parquet Format 
Our results indicate that the Parquet format conserves considerable storage space—up to 2.8x less total storage space 
compared to the TextFile format.

Table C1. Compression Ratios for TextFile versus Parquet Formats

Database Tables

Sizing Formula 
Client Factor (CF) = 1000 
Scale Factor (SF) = 2000

Raw Data Size 
TextFile Format

HDFS Data Size 
Parquet Format

Compression Ratio  
TextFile: Parquet

Account 1000 * CF * SF 159.9 GB 68.7 GB 2.33
Client 100 * CF * SF 99 GB 78.4 GB 1.26
Credit card 300 * CF * SF 49.2 GB 15.6 GB 3.15
Customer service 10 * CF * SF 1.1 GB 372.7 MB 3.02
Debit card 100 * CF * SF 49 GB 16.9 GB 2.9
Demographics 10 * SF 736.5 KB 420.8 KB 1.75
Insurance 200 * CF * SF 26.8 GB 15 GB 1.79
Investment 200 * CF * SF 21 GB 11.1 GB 1.89
Loan 400 * CF * SF 53.6 GB 24.8 GB 2.16
Payment 200 * CF * SF 103.7 GB 66.2 GB 1.57
Product 60 3.5 KB 4.6 KB 0.76
Taxation 10 * CF * SF 1018.3 MB 425.8 MB 2.39
Transaction and 
Transaction Loana

25000 * CF * SF 
400 * CF *SF * (Loan Durationa)

6.8 TB 2.2 TB 3.09

Total 7.3 TB 2.6 TB 2.8
a The Transaction Loan table is distributed based on active years, loan duration, and payment schedule for a loan account. 

https://www.bankmark.de/products-and-services/pdgf/
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1 Testing by Intel as of June 24-27, 2020. 21-node cluster. 2x Intel® Xeon® Gold 6248 processor @ 2.50 GHz, Intel® Hyper-threading Technology 
ON, Intel® Turbo Boost Technology ON, OS = CentOS Linux release 7.6.1810 (Core), Total Memory = 384 GB (12 slots/16 GB/2933 MHz), BIOS = 
SE5C620.86B.02.01.0008.031920191559 (ucode: 0x500002c). Software Stack: Cloudera Distribution for Hadoop (CDH) v6.2.0, Apache Spark 
v2.4.0-cdh6.2.0, Hadoop v3.0.0-cdh6.2.0, Hive v2.1.1-cdh6.2.0, Kudu v1.9.0-cdh6.2.0, Parallel Data Generation Framework (PDGF) v2.6. Intel 
MKL Enablement: CDH Parcels :mkl-2019.5.281,mkl wrapper parcel 1.0

2 A tuple is a sequence (or ordered list) of n elements.
3 More explanation on ALS implementation can be found at the following links:  

“Large-Scale Parallel Collaborative Filtering for the Netflix Prize,” link.springer.com/chapter/10.1007/978-3-540-68880-8_32 
“Speeding up Distributed Big Data Recommendation in Spark,” arxiv.org/pdf/1508.03110.pdf

4 Model drift, sometimes called concept drift, is when the statistical properties of the target variable, which the model is trying to predict, 
change over time in unforeseen ways. This causes problems because the predictions become less accurate as time passes.

5 See endnote 1.
6 See endnote 1 for configuration details.
7 “Hidden Technical Debt in Machine Learning Systems,” papers.nips.cc/paper/5656-hidden-technical-debt-in-machine-learning-systems.pdf 
8 See Appendix C: Data Acquisition – Compression Benefits for Hive on Spark with Parquet Format.
9 See endnote 1.
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